Analytic functions in Hardy space
H^(s)(\psi\text, \!\!\!\!\Gamma) on tube domains are described. We prove that
F(z)\in H^(s)(\psi\text, \!\!\!\!\Gamma)(2s \text> n) if and only if
F(z) can be expressed as Fourier-Laplace transform of a function belonging to
L_s'^2(\mathbbR^n) and is supported in set
\overlineU(\psi\text, \!\!\!\!\Gamma). With
s=1, relationships between spectral functions of
F(z) in
H^(1)(\psi\text, \!\!\!\!\Gamma) and its partial derivatives of one order
\partial F(z)/\partial z_k for
k\; \rmequals\;\rmto\;1\text, \!\!\!\!2\text, \!\!\!\!\cdot\cdot\cdot\text, \!\!\!\!n.