DENG Guantie, WANG Weiwei. The integration of functions in the weighted Hardy spaces[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(5): 617-623. DOI: 10.12202/j.0476-0301.2019249
Citation: DENG Guantie, WANG Weiwei. The integration of functions in the weighted Hardy spaces[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(5): 617-623. DOI: 10.12202/j.0476-0301.2019249

The integration of functions in the weighted Hardy spaces

  • Analytic functions in Hardy space H^(s)(\psi\text, \!\!\!\!\Gamma) on tube domains are described. We prove that F(z)\in H^(s)(\psi\text, \!\!\!\!\Gamma)(2s \text> n) if and only if F(z) can be expressed as Fourier-Laplace transform of a function belonging to L_s'^2(\mathbbR^n) and is supported in set \overlineU(\psi\text, \!\!\!\!\Gamma). With s=1, relationships between spectral functions of F(z) in H^(1)(\psi\text, \!\!\!\!\Gamma) and its partial derivatives of one order \partial F(z)/\partial z_k for k\; \rmequals\;\rmto\;1\text, \!\!\!\!2\text, \!\!\!\!\cdot\cdot\cdot\text, \!\!\!\!n.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map