QI Zonghui, WANG Hui, LIU Yongping. An extension of the sharp Wirtinger inequality[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 763-770. DOI: 10.12202/j.0476-0301.2019276
Citation: QI Zonghui, WANG Hui, LIU Yongping. An extension of the sharp Wirtinger inequality[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 763-770. DOI: 10.12202/j.0476-0301.2019276

An extension of the sharp Wirtinger inequality

  • In this study, we give a sharp Wirtinger inequality \left\| f \right\|_p \text≤ C(p\rm,q)(b - a)^r + 1 / p - 1 / q \left\| f^(r) \right\|_q\rm,\;\; 1 \text≤ p\rm, q \text≤ \infty . For an arbitrary f \in W_q^ra\rm,b with f(x_1) = f(x_2) = \cdots = f(x_r) = 0,a \text≤ x_1 \text< x_2\text< \cdots \text< x_r \text≤ b.From integral type remainder of Lagrange interpolation, we refer computation of C(p\rm,q) to the norm of an integral operator. We refer values of C(1\rm,1) and C(\infty \rm,\infty ) to two explicit integral expressions and value of C(2\rm,2) to computation of maximum eigenvalue of a Hilbert-Schmidt operator.An example was then given to show our method.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map