ZHANG Junqiang. Weak type limiting estimates for maximal functions[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 771-774. DOI: 10.12202/j.0476-0301.2020326
Citation: ZHANG Junqiang. Weak type limiting estimates for maximal functions[J]. Journal of Beijing Normal University(Natural Science), 2020, 56(6): 771-774. DOI: 10.12202/j.0476-0301.2020326

Weak type limiting estimates for maximal functions

  • We consider weak type limiting estimates for non-tangential maximal function Nα and radial maximal function R when λ→0.To be precise, we demonstrate that, for any given 0 \text< \alpha \text< 2^1/n - 1 and any 0 \text≤ \rmf \in L^1\left( \mathbbR^n \right), there exists a constant of 1\text<N\text<\infty such that \dfracV_n\varPhi \left( \alpha \right)2N^n\left\| f \right\|_1 \text≤ \mathop \rmlim\limits_\lambda \to 0 \lambda \left| \left\ x \in \mathbbR^n:N_\alpha \left( f \right)\left( x \right) \text> \lambda \right\ \right| \text≤ V_n\left( 2 - \dfrac\varPhi \left( \alpha \right)2N^n \right)\left\| f \right\|_1, \dfracV_n2N^n\left\| f \right\|_1 \text≤ \mathop \rmlim\limits_\lambda \to 0 \lambda \left| \left\ x \in \rmR^n:\mathbbR\left( f \right)\left( x \right) \text> \lambda \right\ \right|\text≤ V_n\left( 2 - \dfrac12N^n \right)\left\| f \right\|_1, where Vn denotes volume of a unit ball of \mathbbR^n
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map