We consider weak type limiting estimates for non-tangential maximal function
Nα and radial maximal function
R when
λ→0.To be precise, we demonstrate that, for any given
0 \text< \alpha \text< 2^1/n - 1 and any
0 \text≤ \rmf \in L^1\left( \mathbbR^n \right), there exists a constant of
1\text<N\text<\infty such that
\dfracV_n\varPhi \left( \alpha \right)2N^n\left\| f \right\|_1 \text≤ \mathop \rmlim\limits_\lambda \to 0 \lambda \left| \left\ x \in \mathbbR^n:N_\alpha \left( f \right)\left( x \right) \text> \lambda \right\ \right| \text≤ V_n\left( 2 - \dfrac\varPhi \left( \alpha \right)2N^n \right)\left\| f \right\|_1,
\dfracV_n2N^n\left\| f \right\|_1 \text≤ \mathop \rmlim\limits_\lambda \to 0 \lambda \left| \left\ x \in \rmR^n:\mathbbR\left( f \right)\left( x \right) \text> \lambda \right\ \right|\text≤ V_n\left( 2 - \dfrac12N^n \right)\left\| f \right\|_1, where
Vn denotes volume of a unit ball of
\mathbbR^n.